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Abstract

Optimum control voltage design for static shape control of structures with nonlinear piezoelectric actuators is
studied in this paper. In order to perform static shape control, the finite element equations of plates with nonlinear
piezoelectric actuator patches is formulated using an eight-node adhesive element which combines a pair of collocated
four-node quadrilateral elements for the upper and lower plates and a pseudo-adhesive layer element. An iteratively
calibrated incremental method is presented to find the optimal control voltages that can actuate a shape best matching
the desired shape. In this method, the desired shape is expressed by the sum of a number of small incremental desired
shapes, and the control voltages to achieve each incremental desired shape are calculated step by step. The control
voltages in each step are then calibrated by using the accumulated intermediate desired shape iteratively. Finally, a
simulation example is given to illustrate that the present algorithm is effective in finding the optimal control voltage
distribution for shape control of nonlinearly actuated structures. The results show that the present method can give
satisfactory control voltages with a reasonable number of incremental steps.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Static shape control of flexible structures using piezoelectric actuators has attracted much attention in
recent years (Irschik, 2002; Tong et al., 1998; Ghosh and Batra, 1995; Bruch et al., 2000). The main task in
static shape control of structures using piezoelectric actuators is to design the control voltages so as to
achieve or best match the desired shape. Since the shape control of structures is an inverse problem, except
for several simple structures, the control voltages cannot be solved uniquely. Static shape control can be
performed based on analytical solutions (Zhang and Sun, 1999; Vel and Batra, 2001) for some structures.
However, due to the difficulties in seeking the analytical solutions for more complicated structures, the
control voltages are usually sought using finite element analysis (FEA) (Benjeddou et al., 1999) and
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optimization procedures to minimize the difference between the actuated shape and the desired one. The
optimal control voltages can be obtained either analytically or numerically. Koconis et al. (1994) developed
a solution scheme to find the optimal control voltages by minimizing an error function between the de-
formed shape and the desired shape. Hsu et al. (1997) applied the gradient projection algorithm to find the
optimal values of design variables in the shape control of plates. Agrawal and Treanor (1999) employed the
simplex search algorithm to find the optimal actuator locations and voltages. Recently, Chee et al. con-
sidered more general error functions including curvatures (Chee et al., 2001) and slopes (Chee et al., 2002)
and presented procedures to find the optimal voltage distribution in static shape control of smart plates
based on numerical optimization methods.

In most cases, the constitutive relation of piezoelectric materials is nonlinear (Wang et al., 1999) and may
even exhibit hysteresic behavior (Zhou and Chattopadhyay, 2001) under a cyclic electric field. Although
there are many literatures (Agnes and Inman, 1996; Zhou and Tzou, 2000) referring to the nonlinear
piezoelectric materials, the research on shape control of structures using nonlinear piezoelectric actuators is
very rare. Ajit et al. (2001) presented a feedback algorithm (FA) for shape control of beams with nonlinear
piezoelectric actuators. In this method, the actuation voltages required for shape control are estimated by
an incremental procedure, and then the difference between the actuated shape and the desired one is cal-
culated. If this difference is not small enough, it is taken as the new desired shape and repeat the same
process until the final control voltages is obtained.

In this paper, an iteratively calibrated incremental method (ICIM) is presented to find the optimal
control voltages for static shape control of structures with nonlinear piezoelectric actuators. The basic
equation used for shape control is formulated based on an adhesive element model, which includes a four-
node quadrilateral upper plate element, a lower plate elements and a thin adhesive layer element. To find
the optimal control voltages, the desired shape is divided into a number of small incremental desired shapes,
and the control voltages to achieve each incremental desired shape are estimated in each incremental step.
The control voltages in each step then are calibrated iteratively by using the accumulated intermediate
desired shape. In addition to the ICIM, other methods such as simple incremental method (SIM), iterative
incremental method (IIM), and calibrated incremental method (CIM) are also formulated and evaluated by
comparing them with the FA. Finally, a simulation example is given to illustrate the present method. The
results show that the present method can give satisfactory control voltages for shape control of nonlinearly
actuated structures with a reasonable number of incremental steps.

2. Basic equations of plates with nonlinear piezoelectric actuators
2.1. Description of nonlinear piezoelectricity

The nonlinear constitutive relation may be expressed in the following form:
6 =C¢—o,(E), (1)

where ¢ € R® and & € RS are the stress and strain vector, respectively; C € R%*¢ is the elastic matrix and
6,(E) € RS is the stress induced by the nonlinear piezoelectricity which are nonlinear functions of the ap-
plied electric field E € R*. The nonlinear stress can be rearranged into the following form:

o,(E) = ¢' (E)E, (2)

where e(E) € R** is the piezoelectric stress coefficient matrix, whose entries can be expressed as functions
of the applied electric field density for nonlinear piezoelectric materials (Crawley and Lazarus, 1991; Tan
and Tong, 2001). In general, each entry of the piezoelectric stress coefficient matrix can be approximated by
the first several terms of its Taylor expansion.
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When both direct and inverse piezoelectric effects are taken into account, the e-type constitutive relation
of a nonlinear piezoelectric material can be descried by

6 =Ces—e'(E)E,

D = e(E)s + 4E, 3)

where 5 € R is the permittivity matrix, D € R® is the electric displacement vector. For a nonpiezoelectric
material, e and n are zero matrices.

2.2. Finite element formulation

In this section, the basic equations are formulated for static shape control of plates with nonlinear
piezoelectric actuator patches (see Fig. 1) based on an eight-node adhesive element. To form the finite
element equations of the composite plate bonded with nonlinear piezoelectric actuator/sensor patches, an
adhesive element is employed, which includes collocated four-node quadrilateral elements for the upper and
lower adherents and a pseudo-adhesive layer element, as shown in Fig. 2.

For the upper and lower elements in the adhesive element, four-node isoparametric elements with five
degrees of freedom at each node are used. Denoting u = (u, v, w, ¥, 1//y)T which consists of the translational
displacements and the rotational angle about x- and y-axes in the upper and lower plate elements, the
displacement vector can be expressed in the form of interpolation:

u(x,y) = N(x, y)uf, i=1,3, (4)

Nonlinear
piezo electric
patch

Host plate

Fig. 1. Plate with nonlinear piezoelectric actuator patches.

Upper plate
element

FEE
s

Adhesive
layer

Lower plate
element

Fig. 2. An eight-node adhesive element with upper, lower adherents and bonding layer.
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where the subscript i(= 1,2, 3) represents the upper, adhesive and low plate elements, respectively, uf is a
vector consisting of the displacements at four nodes of the element, u¢ = (u} ub uj ul.a)T and uf
(j=1,2,3,4) is the nodal displacement vector at the jth node of the ith element. The matrix N is the
interpolation matrix given by

N=[N; N N3 NgJ, N;=NlIs, Ni(&n) =1+ +nn)/4, j=12,3,4, (5)

where (¢;,7;) is the coordinates of the jth node in the parent element. In addition, to avoid shear locking
problem, the shape functions for the two rotational angles are replaced by (Tong and Sun, 2000)

NCV‘I' = (1 - ’1/11)/47 ]vnj = (1 - éjé)/4? Jj= 1727374 (6)

which are used to calculate the shear strain ¢, and &,,.
Employing Eq. (4), the strains in the upper and lower elements can be expressed in terms of the nodal
displacements as follows:

& = B,‘ll?, 1= 1,3, (7)

where B; € R**® is the strain-displacement matrix, & = (&, ' &l )T is the generalized strain vector in

which &, = (&, &y, yxy),.T, L = (Lo Xy xxy)l.T and &; = (7,,, 7.); are the membrane, bending and shear
strains, respectively.

The strains in the adhesive layer between the upper and lower elements can be also expressed by the eight
nodal displacement vectors. Since the adhesive layer is very thin, we assume that it carries constant shear
strains 7,,, 7,, and peel strain ¢, along its thickness and the other strains ¢, ¢, and 7,, can be neglected. The
shear and peel strains in the adhesive layer element can be expressed as

& = (Wl - Wz)/h27

h h
Yy = (1)1 — U3+ 51%1 +23,‘px3) /h27 (8)

h h
V2 = <u1 — Uz — El,‘pyl - 23'70}73) /hz’

where the subscript 2 represents the adhesive layer, i, and y, are the rotational angle about axes y and x,
respectively. Substituting Eq. (4) into Eq. (8), the strain vector in the adhesive layer can be expressed by

& = LalNu? + La3Nll§, (9)
where
&n 1 O O 2 0 O
& = ')))22 s Lai = ﬁ 0 2 0 h,’ 0 y i= 1, 3 (10)
- 212 0 0 0 —h

In addition to the mechanical degrees of freedom (DOF), the electric potential in a plate element should
also be considered. It is assumed that the electric potential is linearly distributed in the piezoelectric
actuator layer along its thickness and that the potential at its bottom is set to be zero. In this case, the
potential at the upper surface is equal to the applied voltage between its two electrodes. Similar to the
treatment of mechanical DOF, the electric potential (voltage) in a plate element can be expressed by its four
nodal voltages using the same shape functions as the mechanical degrees, i.c.,
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Vi=Npv, i=1,3, (11)

where v¢ € R* is a vector consisting of the four nodal voltages for element e, and Ny = [Ny N, N3 Ny
The electric field densities along x, y and z directions can be obtained by differentiating the potential with
respect to x, y and z, respectively and can be written in the following form:

E = _BEiV?a i=1,3, (12)
where
i i ) i hi ox dy ) )

The total strain and electric energy of an adhesive element can be written as

v=3Y [ @a-piE)ar+s [ dear, (14

i=1,3 YV &)

where ¥; is the volume occupied by the ith element. Using the generalized strain vector, the energy of an
adhesive element can be further expressed as

1 _ 1
T T T
U = E Z |:8;rc,'£i — Zﬁ;re,‘(Ei)E,' — Ei T]iE,‘:| dv + i 8-2FC2£2dV7 (15)
i=1,3 JVi Az
Cb,- ZC/,i 0 ez C33 0 0
Ci = ZCb,' Zszi 0 y éi = ze} y C2 = 0 Cy4 0 s
0 0 CS,- eST i 0 0 Css 5
i1 Ci2 Cie €11 €en € €14 €15
Cy4 0
Coi=|cn cn c|, Ci= 0 ¢ , €pi= [€exn €1 €ex |, € = [€eu e |. (16)
5514
Cle C26 Co6 | ; ! €31 €3 €3 €34 €35

i i i
Note that €;, e;; and e,; are no longer constant matrices but electric field-dependent matrices for the piezo-
electric materials with nonlinear piezoelectricity.

The work done by external mechanical loads is given by

w=> (ufTFC,»—k / u'f, dS + / u,.TdeV), (17)
Si Vi

=13

where F; is the concentrated force vector, f; and fj; are the surface and volume force vector, respectively.
Employing the principle of virtual work, the following equilibrium equations for each adhesive element
can be obtained:
Keue + ge(ve) — Fe’ (18)
where u® = (uT  ugT )" and v = (vT ¥")" are the nodal displacement and voltage vectors of the
adhesive element including both upper and lower plate elements, and

I(e + Kall Ka13 g (Ve) Fe + Fe + Fe
K¢ = 1 . , ¢(v¢) = 1\ , Fe = gl ‘;1 gl 19
Kai3 K; + Ka33:| gv) { g,(v3) Fis +F;+Fp; (19)

S,

and
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K = / B/CB;dV, g(v)= < / B/ &(v})Bg dV> vi, F5= / N'f,dS,
Vi i i
F, = / N'f,;dV, K, = / N'L;CL; NdV, j=13, i=1,3. (20)
Vi V2
Eq. (18) gives the equilibrium equations for an adhesive element which couples the nodal displacements and
the nodal voltages in both upper and lower plate elements. Since an adhesive element layer has eight nodes
and there are five mechanical DOF and one electric DOF in each node, Eq. (18) gives 40 equations con-
sisting of 40 mechanical DOF and eight electric DOF (voltage). K,; (i,j =1, 3) in Eq. (20) is the contri-
butions of the adhesive layer to the element stiffness matrix K°.
The global equations for a smart plate can be obtained by assembling the element equations given in Eq.
(18). The global equilibrium equations of a plate with nonlinear piezoelectric actuator can be written into
the following general form:

Ku +g(v) =T, (21)

where K € R is the global stiffness matrix, g(v) € R” is a vector of control forces whose components are
nonlinear functions of the control voltage, v € R", the voltage vector composed of all nodal voltage of the
piezoelectric actuators, u € R” is the displacement vector consisting of all nodal displacements, f € R" is the
force vector contributed by all mechanical loads, n and ny are the total numbers of mechanical and electric
DOF, respectively.

2.3. Error function for shape control

To generally measure the closeness between an actuated shape and a desired shape, consider a gen-
eralized “shape” defined by

y =Ru, (22)

where R € R™*" is a weighting matrix, and y € R” is an index vector. The generalized shape can be dis-
placement, slope, curvature, strain, generalized force or their combination depending on the selection of the
weighting matrix R.

To find the optimal control voltages for the actuator patches, an error function between the actuated
shape and the desired shape must be defined. For a given desired shape y, € R”, the shape error is

Ay=y—-y,=Ru—y, (23)

With introduction of proper boundary conditions, the stiffness matrix K is nonsingular, and therefore, the
relationship between the displacement and control voltage can be solved from Eq. (21) as

u=-K'g(v)+K'f. (24)
Substituting Eq. (24) into Egs. (22) and (23) gives
Ay=-RK'g(v) +K 'f -y, =Ru—y, u=-K'g(v), y=y,-K'f, (25)

where u is the displacement actuated by the control voltage only, and y, is the new desired shape including
the displacements caused by all mechanical loads. The objective function then is simply defined as the sum
of the square errors between the actual shape and the desired shape in any nodes, that is

e = Ay = (Ru—y,)" (Ru—y,). (26)
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Substituting Eq. (24) into Eq. (26), we have

e(v) = g"(v)Ag(v) +2bg(v) + ¥4 Yo, (27)
where
A=K 'R'RK' ¢ R, b=K "Ry, € R". (28)

Eq. (27) gives the square error between the actual and desired shapes, which is a function of the nodal
displacements and control voltages and serves as the objective function in finding the optimal control
voltages in the following sections.

3. Incremental method

To find the optimal control voltage that minimizes the square error expressed in Eq. (27), letting
Oe(v)/0v = 0, we have
0 )
g (A ZBY | prle (29)

ov ov

where J(v)0g(v)/0v € R"™" is a Jacobian matrix.
Eq. (29) is a set of nonlinear algebraic equations in terms of the control voltage. When the v is very close
to vy, introducing the approximations

g(v) ~ glvo) + By ), B0 Cet) (30)
in Eq. (29), gives
[g(vo) + aga(:()) (v— vo)} Aagéz") +b aga(:(’) =0. (31)

To make Eq. (30) hold, the given desired shape function is treated as the sum of many small sub-shapes,
that is

Yo=Y Ay, (32)

where Ayy = yot!' —y» (m=1,2,...,M) is the increment of the desired shape. The optimal control volt-

ages to achieve the final desired shape will be obtained step be step by finding the voltages to achieve all the
small sub-shapes.

3.1. Simple incremental method (SIM)

To actuate the small increment of the desired shape Ayj from y{, the increment of the optimal control
voltages Av” from v” for the piezoelectric actuator patches can be found from Eq. (31). In each small
incremental step, the Jacobian matrix is evaluated at v and the increment of the optimal control voltages
Av™ can be obtained by

Ab, — K TRTAY (33)
AV = —[JTAI(v )] I (v (Ag(v' ) + Aby,), (34)

V=V LAV m=1,2,.. M. (35)
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The initial control voltage vector v° is a zero vector. After M steps, the optimal control voltage v/ can be
obtained, which can actuate a static shape best match the desired shape y, for a structures with nonlinear
piezoelectric actuators.

3.2. Iterative incremental method (IIM)

To improve the precision of the calculation, the iterative procedure can be employed in each incremental
step. In this case, the increment of the control voltages Av” for an increment of the desired shape Ayj will be
determined iteratively:

Ab, = K TR Ay?, (36)
AVE = AV — [JTAI (v + Av:.”)]flJT(v’"_1 + AV)) (Ag(v"~" + AV") + Ab,,), (37a)
Loop for i until (Av, — Av")" (A, — AV") < g then AV" = AV",, (37b)
V=V AV, m=1,2,..., M. (38)

The increment of the control voltages obtained from Egs. (36) to (38) is expected to be more accurate than
that obtained from Egs. (33) to (35) due to the application of the iteration procedure in each incremental
step.

3.3. Calibrated incremental method (CIM)

In the SIM given in the previous section, since the desired shape is achieved by implementing many sub-
desired-shapes, the error in each incremental step will be passed to the next step due to the fact that the
voltages obtained in one step will be used as the base voltage in the next step. The error in every step will be
accumulated gradually. Although the iterative procedure employed in each incremental step in the IIM can
reduce the error, the accumulated error will not be completely removed. This is because the increment of the
control voltages is obtained based on a local desired shape only without any information of the whole
shape.

In this section, we presented an improved incremental procedure with overall calibration to find the optima
voltages for static shape control of plate with nonlinear piezoelectric actuators. In the method, for the given
incremental desired shape Ay, the new obtained control voltage v = v"~! + Av" is treated as an estimation
of v (denoted by v"). v" is the approximate control voltage to actuate the desired shape y. With the esti-
mated value v, the nonlinear control forces g(v") as well as the Jacobian matrix J(¥") can be evaluated. Like
a linear system with known piezoelectric stress constant, the optimal control voltages for achieving the given
desired shape y? can be obtained from Eq. (31), that is, v = —[JTAJ(V’”)]71JT(V”’)(Ag(V'") +b,,). This
control voltage serves as the base voltage to calculate the new voltages in the next incremental step. The CIM
is described as follows:

Ab,, = K TRTAy?, (39)
AV' = —[JTAI( ]I (v ) (Ag(v'!) + Ab,), (40)
V' = vl AV (41)

b, = Ab, + Ab, + - - - + Ab,, (42)
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-1
V= = [ITAIE)| T (ARG + D), (43)

m=1,2,..., M.

The main difference between the incremental method given in Egs. (33)-(35) and the CIM in Egs. (39)—(43)
lies in Egs. (42) and (43), in which a new control voltages v are obtained for the intermediate desired shape
yo = >_;, Ayt based on its estimation v". Since the control voltages v" is obtained from the desired shape
yo rather than the incremental desired shape Ayj' only, it calibrates the incremental procedure in each step
and hence, can improve the precision of the calculation.

3.4. Iteratively-calibrated incremental method (ICIM)

To further improve the accuracy of the calculation, the calibration procedure can be done iteratively by
the following iteration process:

Ab, = K TR Ay?, (44)
AV = — [JTAJ(V”H)]_IJT(vm’l)(Ag(v'”’l) + Ab,,), (45)
vm — mel + AVm, (46)
b, = Ab; + Ab, + - - - + Ab,, (47)
vgl — i‘,l’)l’

~ T ~ -1 T/~ ~

Vi == [ITAIE)] I (AR b ), i= 1.2 (48)
If |V, — V| < & then v"' =V, .

The main difference between the CIM and the ICIM is that the one-step calibration process in Eq. (43) is
replaced by an iterative calibration process in Eq. (48). In this case, the obtained control voltages are also
taken as the estimated values, and then use them to find new voltages repeatedly until the control voltages
converge.

This incremental procedure not only gives the final control voltages for the desired shape, but also gives
the history of the control voltages varying with different desired shapes. Therefore, the advantage of the
incremental methods is that it can be applied to the cases where the piezoelectric material has a very
complicated behavior such as hysteresis.

4. Illustrative examples

As an example, consider a cantilever rectangular thin plate bonded with 20 nonlinear piezoelectric
actuator patches in its upper surface, as shown in Fig. 3. The geometrical dimensions of the structure as well
as the mesh are also given in Fig. 3. The host structure is meshed into 99 elements including 79 ordinary
plate elements and 20 adhesive elements, and the total node number is 200. Assume that the control voltage
is uniformly distributed in each piezoelectric actuator element and no voltage is applied to the host plate.
The 20 piezoelectric actuators are numbered as A1-A20 aligned in column order. The total number of
electric DOF is n; = 20 and that of the mechanical DOF is n = 1000.
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Fig. 3. A cantilevered plate with 20 nonlinear piezoelectric actuators.

The purpose in this example is to find the optimal control voltages to achieve the desired shape of the
host plate described by its transverse displacement as follow:

w(x,) = (coshx — 1)siny/10, 0.0<x<0.15, —0.06<y<0.06

which represents a twisted shape. In this example, the weighting matrix R is a 120 x 1000 matrix and its
entries corresponding to the transverse displacements of the host plate are set to 1.0 and other entries zero
so that the generalized shape y is composed of only the transverse displacements at all nodes of the host
plate only.

In the following calculation, the host plate is made of isotropic aluminum and the piezoelectric actuators
are made of piezoelectric ceramic PZT. The Young’s moduli of the host plate, the piezoelectric material and
the adhesive layer are 68.9, 81.3 and 2.4 GPa, respectively. The Poisson’s ratios of these materials are 0.25,
0.43 and 0.34, respectively. The piezoelectric stress modulus of the piezoelectric material is a function of the
applied control voltage (field). In practice, the nonlinear function of a given piezoelectric material can be
obtained from its tested strain—field curve. In this example, to demonstrate the proposed incremental
algorithms for finding the control voltage of nonlinearly actuated structure, we simply choose the piezo-
electric stress modulus as

est (V) =exn (V) = e[l +asgn (V)V] (49)

and the other entries in the piezoelectric stress matrices e;,; and e, are zero. The parameter o in Eq. (49) is a
nonlinear factor which determines the shape of the nonlinear stress—voltage curve. A negative nonlinear
factor o represents a softening nonlinear stress—voltage relationship. Fig. 4 gives the nonlinear relationship
between the induced stress and the applied control voltage for different o with ¢y = 9.53 N/V m.

First, the incremental method with and without iteration are examined by comparing with the feedback
algorithm (FA) given by Ajit et al. (2001). When ¢y = —9.53 N/Vm, o= —1 x 10™* in Eq. (44) and
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Fig. 4. Nonlinear stress—electric field curve.
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¢y = 1073, the optimal control voltage distribution to achieve the desired shape is obtained by FA and listed
in Table 1, which is used as the baseline of the comparison.

To use the incremental method, the desired shape is divided into 20 equal incremental shapes, and the
optimal control voltages are calculated using the algorithm given in Egs. (33)—(35) after 20 steps and

Table 1
Optimal control voltages (V) obtained by different algorithms
Actuators FA (Ajit Method
etal, 200D)  gpm M CIM ICIM
Voltage Error Voltage Error Voltage Error Voltage Error
(V) (Vo) V) (Vo) (V) (%) V) (%0)

Al —-1000.9 —942.95 -5.79 —947.89 -5.30 —-1000.14 —-0.08 —-1000.9 0
A2 —1337.52 —1230.54 -8.00 —1239.26 -7.35 —1335.39 —-0.16 —1337.52 0
A3 1337.52 1230.54 -8.00 1239.26 -7.35 1335.39 -0.16 1337.52 0
A4 1000.9 942.95 -5.79 947.89 -5.30 1000.14 —-0.08 1000.9 0
AS —2357.54 -1989.76 -15.60 -2014.93 —-14.53 -2337.52 -0.85 —2357.54 0
A6 1299.8 1199.15 -7.74 1207.39 -7.11 1297.89 —-0.15 1299.8 0
A7 -1299.8 -1199.15 -7.74 -1207.39 -7.11 -1297.89 -0.15 -1299.8 0
A8 2357.54 1989.76 —-15.60 2014.93 —-14.53 2337.52 -0.85 2357.54 0
A9 —-1540.14 —-1395.42 -9.40 —-1406.85 —-8.65 —1536.55 -0.23 —1540.14 0
Al0 889.09 843.87 -5.09 847.78 —4.65 888.58 —-0.06 889.09 0
All —889.09 —843.87 -5.09 —847.78 —4.65 —888.58 -0.06 —-889.09 0
Al2 1540.14 1395.42 -9.40 1406.85 —-8.65 1536.55 -0.23 1540.14 0
Al3 -1367.69 —1255.5 -8.20 -1264.6 -7.54 -1365.39 -0.17 -1367.69 0
Al4 569.56 551.57 -3.16 553.19 -2.87 569.45 —-0.02 569.56 0
AlS —-569.56 -551.57 -3.16 -553.19 -2.87 -569.45 -0.02 -569.56 0
Al6 1367.69 1255.5 -8.20 1264.6 —-7.54 1365.39 -0.17 1367.69 0
Al7 197.88 195.78 -1.06 195.98 -0.96 197.87 -0.01 197.88 0
Al8 187.77 185.88 -1.01 186.06 -0.91 187.76 -0.01 187.77 0
Al9 -187.77 —185.88 -1.01 —-186.06 -0.91 —-187.76 -0.01 -187.77 0
A20 —-197.88 —-195.78 -1.06 —-195.98 —-0.96 -197.87 —-0.01 —-197.88 0
Square error  1.2647x107°  1.5878x 10~ 1.5478 x 10~ 1.2652x 10~ 1.2647x 107~

(m?)
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presented in Table 1. To improve the accuracy of the increment of the control voltages in each incremental
step, the method in Egs. (36)—(38) is used and the obtained control voltage is also listed in Table 1. It is
found that the control voltages of the actuators are anti-symmetrical about the x-axis, and actuator A5 and
A8 have the highest voltage.

Table 1 shows that the SIM in Eqgs. (33)-(35) can only give a rough estimation of the optimal control
voltage distribution for the static shape control with nonlinear piezoelectric actuators. Compared to the
results obtained from FA, the maximum error of the control voltages in Table 1 is 15.6%. When the IIM in
Eqgs. (36)—(38) is used to determine the incremental voltages for each given increment of the desired shape,
the obtained final control voltages can be improved, the relative maximum error is reduced to 14.5%. It is
found that the error of the obtained control voltage distribution using the incremental method cannot be
remarkably decreased by increasing the number of incremental steps. Therefore, both SIM and IIM are not
competent methods to find the control voltages in nonlinear shape control of structures.

Next, the effectiveness of the CIM is evaluated. When the desired shape is still divided into 20 equal
incremental shapes, the control voltages can be calculated using CIM method given in Egs. (39)-(43) and
listed in Table 1. The results have been significantly improved compared to the simple incremental algo-
rithm. For example, the maximum error in the voltages obtained by the CIM is less than 0.85%. If the
number of the incremental steps is increased, more accurate control voltages can be obtained using this
method. In addition, when the ICIM is used, the deviation of the control voltage can be completely re-
moved, as shown in Table 1.

Fig. 5 gives the history of the control voltages of the actuator patch A5, which has the highest control
voltage, with the different intermediate desired shapes. In Fig. 5, the 4,, represents the intermediate desired
shapes such that Yj = 4,Y,. As shown in Fig. 5, the error of the control voltage obtained by the SIM and
IIM become increasingly larger as the desired displacements increase. However, the CIM can give a sat-
isfactory estimation of the control voltage as long as the number of the total incremental steps is adequate.
The ICIM method can give the same results as the FA. Therefore, in the following calculations, only the
ICIM method in Egs. (44)—(48) is employed.

Applying the obtained the optimal control voltages to the nonlinear piezoelectric actuators, we can
obtain the actually achieved shape. Fig. 6 presents the transverse displacements at all nodes and Fig. 7 gives
the overall view of the actuated shape and the desired shape. It is can be seen from Figs. 6 and 7 that the
achieved shape is very closed to the desired one and the square error between the actuated shape and the
desired one is 1.26x 10~ m?.

——SIM  —*—1IM
-500 4 ——CIM  ——ICIM
w
= —-o—
= FA
=
o -1000-
&
=
o
= -1500
o
=
g
© 2000
-2500
0 0.2 0.4 0.6 0.8 1

Am

Fig. 5. History of the control voltage on actuator A5 with different intermediate desired shapes.
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Fig. 6. The actuated and desired transverse displacements at all nodes of the host plate.

(b)

Fig. 7. The actuated shape (a) and the desired shape (b).

The main advantage of the incremental method is that it can give a history of the control voltages as the
desires shape approaches to the final one although more CPU time is needed than FA in the calculation.
Fig. 8 presents the history of the control voltages on the actuators with positive voltages when
o= —1 x 10~*. It shows that the optimal control voltage on each actuator increases nonlinearly as the
shape approaches to the desired one, particularly for those with higher control voltages such as actuator A8
and A12. In this case, the final control voltage on actuator A8 is 31% higher than that for the linear case
(= 0).

Next, the effect of the nonlinear piezoelectricity on the optimal voltage distribution is examined. The
history of the control voltage on actuator A8 is calculated and shown in Fig. 9 using the ICIM method for
different nonlinear factor o from 0 to —0.00012, which represents a weakening nonlinearity. As indicated in
this figure, the control voltage in the actuator requested to achieve a given transverse displacement dis-
tribution varies nonlinearly as the desired displacement gets larger. The stronger the nonlinearity of the
piezoelectricity of the piezoelectric material is, the more significant the rate of change of the control voltage
with respect to desired shape. Fig. 10 depicts the relationship between the control voltage distribution on all
actuators and the nonlinearity of the piezoelectricity. Since the obtained optimal voltages are anti-sym-
metrical about the axis x, only the positive ones are presented in Fig. 10 for different nonlinear factors.
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Fig. 8. History of control voltages as the shape approaches the desired one.
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Fig. 9. Effect of nonlinearity of the piezoelectricity on the history of the optimal control voltage on actuator AS.
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Fig. 10. Effect of nonlinearity of the piezoelectricity on the distribution of the optimal control voltages.
Fig. 10 shows that the optimal control voltage for each piezoelectric actuator become higher as the non-

linear factor o decreases. The increases of the control voltages due to the weakening nonlinearity of the
piezoelectricity are more remarkable for the actuators with higher control voltages than those with lower
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Fig. 11. Effect of nonlinearity of the piezoelectricity on the square error.

voltages. For instance, the nonlinearity with o = —0.00012 makes the control voltage on actuator A8 in-
crease 46.2% than that in the linear case. However, the same nonlinearity causes an increase of 2.4% in the
voltage on actuator Al17. In the calculation, it is observed that the optimal control voltages cannot be
obtained using any methods when o < —0.00015. The reason is that increasing the voltage on some
actuator which needs high voltage will no longer provide any more actuating forces due to the softening
nonlinear stress—voltage relationship.

Finally, it should be mentioned that the square error between the achieved shape and the desired one
does not depend on the nonlinear factor o, as shown in Fig. 11. The shape achieved by the nonlinear
piezoelectric actuators with the optimal control voltages is the same as that by the nonlinear ones with their
corresponding control voltages.

5. Conclusions

Based on an eight-node adhesive element including a pair of collocated four-node quadrilateral elements
for the upper and lower adherents and a pseudo-adhesive layer element, static shape control of structures
with nonlinear piezoelectric actuators is investigated. An iteratively calibrated incremental algorithm is
presented to find the optimal control voltages. In this method, the desired shape is expressed by the sum of
a number of small incremental desired shapes, and the control voltages to achieve each incremental desired
shape are calculated step by step. The control voltages in each step then are calibrated by using the
accumulated intermediate desired shape. Finally, a simulation example is given to illustrate the effectiveness
of the present algorithm in finding the optimal control voltage distribution for shape control of nonlinearly
actuated structures. Comparison with the feedback algorithm shows that this method can give accurate
control voltages.
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