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Abstract

Optimum control voltage design for static shape control of structures with nonlinear piezoelectric actuators is

studied in this paper. In order to perform static shape control, the finite element equations of plates with nonlinear

piezoelectric actuator patches is formulated using an eight-node adhesive element which combines a pair of collocated

four-node quadrilateral elements for the upper and lower plates and a pseudo-adhesive layer element. An iteratively

calibrated incremental method is presented to find the optimal control voltages that can actuate a shape best matching

the desired shape. In this method, the desired shape is expressed by the sum of a number of small incremental desired

shapes, and the control voltages to achieve each incremental desired shape are calculated step by step. The control

voltages in each step are then calibrated by using the accumulated intermediate desired shape iteratively. Finally, a

simulation example is given to illustrate that the present algorithm is effective in finding the optimal control voltage

distribution for shape control of nonlinearly actuated structures. The results show that the present method can give

satisfactory control voltages with a reasonable number of incremental steps.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Static shape control of flexible structures using piezoelectric actuators has attracted much attention in

recent years (Irschik, 2002; Tong et al., 1998; Ghosh and Batra, 1995; Bruch et al., 2000). The main task in

static shape control of structures using piezoelectric actuators is to design the control voltages so as to

achieve or best match the desired shape. Since the shape control of structures is an inverse problem, except

for several simple structures, the control voltages cannot be solved uniquely. Static shape control can be

performed based on analytical solutions (Zhang and Sun, 1999; Vel and Batra, 2001) for some structures.

However, due to the difficulties in seeking the analytical solutions for more complicated structures, the

control voltages are usually sought using finite element analysis (FEA) (Benjeddou et al., 1999) and
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optimization procedures to minimize the difference between the actuated shape and the desired one. The

optimal control voltages can be obtained either analytically or numerically. Koconis et al. (1994) developed

a solution scheme to find the optimal control voltages by minimizing an error function between the de-

formed shape and the desired shape. Hsu et al. (1997) applied the gradient projection algorithm to find the
optimal values of design variables in the shape control of plates. Agrawal and Treanor (1999) employed the

simplex search algorithm to find the optimal actuator locations and voltages. Recently, Chee et al. con-

sidered more general error functions including curvatures (Chee et al., 2001) and slopes (Chee et al., 2002)

and presented procedures to find the optimal voltage distribution in static shape control of smart plates

based on numerical optimization methods.

In most cases, the constitutive relation of piezoelectric materials is nonlinear (Wang et al., 1999) and may

even exhibit hysteresic behavior (Zhou and Chattopadhyay, 2001) under a cyclic electric field. Although

there are many literatures (Agnes and Inman, 1996; Zhou and Tzou, 2000) referring to the nonlinear
piezoelectric materials, the research on shape control of structures using nonlinear piezoelectric actuators is

very rare. Ajit et al. (2001) presented a feedback algorithm (FA) for shape control of beams with nonlinear

piezoelectric actuators. In this method, the actuation voltages required for shape control are estimated by

an incremental procedure, and then the difference between the actuated shape and the desired one is cal-

culated. If this difference is not small enough, it is taken as the new desired shape and repeat the same

process until the final control voltages is obtained.

In this paper, an iteratively calibrated incremental method (ICIM) is presented to find the optimal

control voltages for static shape control of structures with nonlinear piezoelectric actuators. The basic
equation used for shape control is formulated based on an adhesive element model, which includes a four-

node quadrilateral upper plate element, a lower plate elements and a thin adhesive layer element. To find

the optimal control voltages, the desired shape is divided into a number of small incremental desired shapes,

and the control voltages to achieve each incremental desired shape are estimated in each incremental step.

The control voltages in each step then are calibrated iteratively by using the accumulated intermediate

desired shape. In addition to the ICIM, other methods such as simple incremental method (SIM), iterative

incremental method (IIM), and calibrated incremental method (CIM) are also formulated and evaluated by

comparing them with the FA. Finally, a simulation example is given to illustrate the present method. The
results show that the present method can give satisfactory control voltages for shape control of nonlinearly

actuated structures with a reasonable number of incremental steps.
2. Basic equations of plates with nonlinear piezoelectric actuators

2.1. Description of nonlinear piezoelectricity

The nonlinear constitutive relation may be expressed in the following form:
r ¼ Ce� rpðEÞ; ð1Þ
where r 2 R6 and e 2 R6 are the stress and strain vector, respectively; C 2 R6�6 is the elastic matrix and

rpðEÞ 2 R6 is the stress induced by the nonlinear piezoelectricity which are nonlinear functions of the ap-

plied electric field E 2 R3. The nonlinear stress can be rearranged into the following form:
rpðEÞ ¼ eTðEÞE; ð2Þ
where eðEÞ 2 R3�6 is the piezoelectric stress coefficient matrix, whose entries can be expressed as functions

of the applied electric field density for nonlinear piezoelectric materials (Crawley and Lazarus, 1991; Tan

and Tong, 2001). In general, each entry of the piezoelectric stress coefficient matrix can be approximated by
the first several terms of its Taylor expansion.



D. Sun et al. / International Journal of Solids and Structures 41 (2004) 2277–2292 2279
When both direct and inverse piezoelectric effects are taken into account, the e-type constitutive relation
of a nonlinear piezoelectric material can be descried by
r ¼ Ce� eTðEÞE;
D ¼ eðEÞeþ gE;

ð3Þ
where g 2 R3�3 is the permittivity matrix, D 2 R3 is the electric displacement vector. For a nonpiezoelectric

material, e and g are zero matrices.

2.2. Finite element formulation

In this section, the basic equations are formulated for static shape control of plates with nonlinear

piezoelectric actuator patches (see Fig. 1) based on an eight-node adhesive element. To form the finite

element equations of the composite plate bonded with nonlinear piezoelectric actuator/sensor patches, an

adhesive element is employed, which includes collocated four-node quadrilateral elements for the upper and

lower adherents and a pseudo-adhesive layer element, as shown in Fig. 2.

For the upper and lower elements in the adhesive element, four-node isoparametric elements with five
degrees of freedom at each node are used. Denoting u ¼ ðu; v;w;wx;wyÞ

T
which consists of the translational

displacements and the rotational angle about x- and y-axes in the upper and lower plate elements, the

displacement vector can be expressed in the form of interpolation:
uiðx; yÞ ¼ Nðx; yÞuei ; i ¼ 1; 3; ð4Þ
bonding 
layer

Nonlinear 
piezo electric 
patch 

Host plate

Fig. 1. Plate with nonlinear piezoelectric actuator patches.

Fig. 2. An eight-node adhesive element with upper, lower adherents and bonding layer.
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where the subscript ið¼ 1; 2; 3Þ represents the upper, adhesive and low plate elements, respectively, uei is a

vector consisting of the displacements at four nodes of the element, uei ¼ uTi1 uTi2 uTi3 uTi4
� �T

and uTij
(j ¼ 1; 2; 3; 4) is the nodal displacement vector at the jth node of the ith element. The matrix N is the

interpolation matrix given by
N ¼ ½N1 N2 N3 N4 �; Nj ¼ NjI5; Njðn; gÞ ¼ ð1þ njnÞð1þ gjgÞ=4; j ¼ 1; 2; 3; 4; ð5Þ
where (nj; gj) is the coordinates of the jth node in the parent element. In addition, to avoid shear locking

problem, the shape functions for the two rotational angles are replaced by (Tong and Sun, 2000)
Nnj ¼ ð1� gjgÞ=4; Ngj ¼ ð1� njnÞ=4; j ¼ 1; 2; 3; 4 ð6Þ
which are used to calculate the shear strain eyz and exz.
Employing Eq. (4), the strains in the upper and lower elements can be expressed in terms of the nodal

displacements as follows:
�ei ¼ Biu
e
i ; i ¼ 1; 3; ð7Þ
where Bi 2 R8�20 is the strain–displacement matrix, �ei ¼ ð eTbi vTi eTsi Þ
T
is the generalized strain vector in

which ebi ¼ ðexx; eyy ; cxyÞ
T

i , vi ¼ ðvxx; vyy ; vxyÞ
T

i and esi ¼ ðcyz; cxzÞ
T

i are the membrane, bending and shear

strains, respectively.

The strains in the adhesive layer between the upper and lower elements can be also expressed by the eight

nodal displacement vectors. Since the adhesive layer is very thin, we assume that it carries constant shear

strains cyz, cxz and peel strain ez along its thickness and the other strains ex, ey and cxy can be neglected. The
shear and peel strains in the adhesive layer element can be expressed as
ez2 ¼ ðw1 � w3Þ=h2;

cyz2 ¼ v1

�
� v3 þ

h1
2
wx1 þ

h3
2
wx3

��
h2;

cxz2 ¼ u1

�
� u3 �

h1
2
wy1 �

h3
2
wy3

��
h2;

ð8Þ
where the subscript 2 represents the adhesive layer, wx and wy are the rotational angle about axes y and x,
respectively. Substituting Eq. (4) into Eq. (8), the strain vector in the adhesive layer can be expressed by
e2 ¼ La1Nue1 þ La3Nue3; ð9Þ
where
e2 ¼
ez2
cyz2
cxz2

2
4

3
5; Lai ¼

1

2h2

0 0 2 0 0

0 2 0 hi 0

2 0 0 0 �hi

2
4

3
5; i ¼ 1; 3: ð10Þ
In addition to the mechanical degrees of freedom (DOF), the electric potential in a plate element should

also be considered. It is assumed that the electric potential is linearly distributed in the piezoelectric

actuator layer along its thickness and that the potential at its bottom is set to be zero. In this case, the

potential at the upper surface is equal to the applied voltage between its two electrodes. Similar to the

treatment of mechanical DOF, the electric potential (voltage) in a plate element can be expressed by its four
nodal voltages using the same shape functions as the mechanical degrees, i.e.,
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Vi ¼ NEv
e
i ; i ¼ 1; 3; ð11Þ
where vei 2 R4 is a vector consisting of the four nodal voltages for element e, and NE ¼ N1 N2 N3 N4½ �.
The electric field densities along x, y and z directions can be obtained by differentiating the potential with

respect to x, y and z, respectively and can be written in the following form:
Ei ¼ �BEiv
e
i ; i ¼ 1; 3; ð12Þ
where
BEi ¼ LEiNE; LEiðzÞ ¼
1

hi
z o
ox z o

oy 1
� �T

; i ¼ 1; 3: ð13Þ
The total strain and electric energy of an adhesive element can be written as
U ¼ 1

2

X
i¼1;3

Z
Vi

eTi ri

�
�DT

i Ei

�
dV þ 1

2

Z
V2

eT2r2 dV ; ð14Þ
where Vi is the volume occupied by the ith element. Using the generalized strain vector, the energy of an

adhesive element can be further expressed as
U ¼ 1

2

X
i¼1;3

Z
Vi

�eTi
�Ci�ei

h
� 2�eTi �eiðEiÞEi � ET

i giEi

i
dVþ 1

2

Z
A2

eT2C2e2 dV ; ð15Þ
�Ci ¼
Cbi zCbi 0

zCbi z2Cbi 0

0 0 Csi

2
64

3
75; �ei ¼

eTb

zeTb
eTs

2
64

3
75

i

; C2 ¼
c33 0 0

0 c44 0

0 0 c55

2
64

3
75

2

;

Cbi ¼
c11 c12 c16
c12 c22 c26
c16 c26 c66

2
64

3
75

i

; Csi ¼
c44 0

0 c55

� 	
i

; ebi ¼
e11 e12 e16
e21 e12 e26
e31 e32 e36

2
64

3
75

i

; esi ¼
e14 e15
e24 e25
e34 e35

2
64

3
75

i

: ð16Þ
Note that �ei; ebi and esi are no longer constant matrices but electric field-dependent matrices for the piezo-

electric materials with nonlinear piezoelectricity.

The work done by external mechanical loads is given by
W ¼
X
i¼1;3

ueTi Fci

�
þ
Z
Si

uTi fsi dSþ
Z
Vi

uTi fVi dV

�
; ð17Þ
where Fci is the concentrated force vector, fsi and fVi are the surface and volume force vector, respectively.

Employing the principle of virtual work, the following equilibrium equations for each adhesive element

can be obtained:
Keue þ geðveÞ ¼ Fe; ð18Þ
where ue ¼ ueT1 ueT3
� �T

and ve ¼ ð veT1 veT3 ÞT are the nodal displacement and voltage vectors of the
adhesive element including both upper and lower plate elements, and
Ke ¼ Ke
1 þ Ka11 Ka13

Ka13 Ke
3 þ Ka33

� 	
; geðveÞ ¼ g1ðve1Þ

g2ðve2Þ


 �
; Fe ¼ Fe

c1 þ Fe
s1 þ Fe

V 1

Fe
c3 þ Fe

s3 þ Fe
V 3


 �
ð19Þ
and
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Ke
i ¼

Z
Vi

BT
i CiBi dV; giðvei Þ ¼

Z
Vi

BT
i
�eiðvei ÞBEi dV

� �
vei ; Fe

si ¼
Z
Si

NTfsi dS;

Fe
Vi ¼

Z
Vi

NTfVi dV ; Kaij ¼
Z
V2

NTLT
aiC2L

T
ajNdV ; j ¼ 1; 3; i ¼ 1; 3: ð20Þ
Eq. (18) gives the equilibrium equations for an adhesive element which couples the nodal displacements and

the nodal voltages in both upper and lower plate elements. Since an adhesive element layer has eight nodes

and there are five mechanical DOF and one electric DOF in each node, Eq. (18) gives 40 equations con-

sisting of 40 mechanical DOF and eight electric DOF (voltage). Kaij (i; j ¼ 1; 3) in Eq. (20) is the contri-

butions of the adhesive layer to the element stiffness matrix Ke.

The global equations for a smart plate can be obtained by assembling the element equations given in Eq.
(18). The global equilibrium equations of a plate with nonlinear piezoelectric actuator can be written into

the following general form:
Kuþ gðvÞ ¼ f; ð21Þ
where K 2 Rn�n is the global stiffness matrix, gðvÞ 2 Rn is a vector of control forces whose components are

nonlinear functions of the control voltage, v 2 RnV , the voltage vector composed of all nodal voltage of the

piezoelectric actuators, u 2 Rn is the displacement vector consisting of all nodal displacements, f 2 Rn is the
force vector contributed by all mechanical loads, n and nV are the total numbers of mechanical and electric

DOF, respectively.

2.3. Error function for shape control

To generally measure the closeness between an actuated shape and a desired shape, consider a gen-

eralized ‘‘shape’’ defined by
y ¼ Ru; ð22Þ
where R 2 Rm�n is a weighting matrix, and y 2 Rm is an index vector. The generalized shape can be dis-

placement, slope, curvature, strain, generalized force or their combination depending on the selection of the

weighting matrix R.

To find the optimal control voltages for the actuator patches, an error function between the actuated

shape and the desired shape must be defined. For a given desired shape yd 2 Rm, the shape error is
Dy ¼ y� yd ¼ Ru� yd : ð23Þ
With introduction of proper boundary conditions, the stiffness matrix K is nonsingular, and therefore, the

relationship between the displacement and control voltage can be solved from Eq. (21) as
u ¼ �K�1gðvÞ þ K�1f: ð24Þ
Substituting Eq. (24) into Eqs. (22) and (23) gives
Dy ¼ �RK�1gðvÞ þ K�1f � yd ¼ R�u� y0; �u ¼ �K�1gðvÞ; y0 ¼ yd � K�1f; ð25Þ
where �u is the displacement actuated by the control voltage only, and y0 is the new desired shape including

the displacements caused by all mechanical loads. The objective function then is simply defined as the sum

of the square errors between the actual shape and the desired shape in any nodes, that is
e ¼ jDyj2 ¼ ðR�u� y0Þ
TðR�u� y0Þ: ð26Þ
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Substituting Eq. (24) into Eq. (26), we have
eðvÞ ¼ gTðvÞAgðvÞ þ 2bTgðvÞ þ yT0 y0; ð27Þ

where
A ¼ K�TRTRK�1 2 Rn�n; b ¼ K�TRTy0 2 Rn: ð28Þ

Eq. (27) gives the square error between the actual and desired shapes, which is a function of the nodal

displacements and control voltages and serves as the objective function in finding the optimal control

voltages in the following sections.
3. Incremental method

To find the optimal control voltage that minimizes the square error expressed in Eq. (27), letting

oeðvÞ=ov ¼ 0, we have
gTðvÞA ogðvÞ
ov

þ bT
ogðvÞ
ov

¼ 0; ð29Þ
where JðvÞogðvÞ=ov 2 Rn�nV is a Jacobian matrix.

Eq. (29) is a set of nonlinear algebraic equations in terms of the control voltage. When the v is very close

to v0, introducing the approximations
gðvÞ � gðv0Þ þ
ogðv0Þ
ov

ðv� v0Þ;
ogðvÞ
ov

� ogðv0Þ
ov

ð30Þ
in Eq. (29), gives
gðv0Þ
�

þ ogðv0Þ
ov

ðv� v0Þ
	T

A
ogðv0Þ
ov

þ bT
ogðv0Þ
ov

¼ 0: ð31Þ
To make Eq. (30) hold, the given desired shape function is treated as the sum of many small sub-shapes,

that is
y0 ¼
XM
m¼1

Dym0 ; ð32Þ
where Dym0 ¼ ymþ1
0 � ym0 (m ¼ 1; 2; . . . ;M) is the increment of the desired shape. The optimal control volt-

ages to achieve the final desired shape will be obtained step be step by finding the voltages to achieve all the

small sub-shapes.

3.1. Simple incremental method (SIM)

To actuate the small increment of the desired shape Dym0 from ym0 , the increment of the optimal control

voltages Dvm from vm for the piezoelectric actuator patches can be found from Eq. (31). In each small

incremental step, the Jacobian matrix is evaluated at vm and the increment of the optimal control voltages

Dvm can be obtained by
Dbm ¼ K�TRTDym0 ; ð33Þ

Dvm ¼ � JTAJðvm�1Þ
� 
�1

JT ðvm�1Þ Agðvm�1Þ
�

þ Dbm
�
; ð34Þ

vm ¼ vm�1 þ Dvm; m ¼ 1; 2; . . . ;M : ð35Þ
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The initial control voltage vector v0 is a zero vector. After M steps, the optimal control voltage vM can be

obtained, which can actuate a static shape best match the desired shape y0 for a structures with nonlinear

piezoelectric actuators.

3.2. Iterative incremental method (IIM)

To improve the precision of the calculation, the iterative procedure can be employed in each incremental

step. In this case, the increment of the control voltages Dvm for an increment of the desired shape Dym0 will be
determined iteratively:
Dbm ¼ K�TRTDym0 ; ð36Þ

Dvmiþ1 ¼ Dvmi � JTAJðvm�1
�

þ Dvmi Þ

�1

JT vm�1
�

þ Dvmi Þ Agðvm�1 þ Dvmi Þ þ Dbm
� �

; ð37aÞ

Loop for i until Dvmiþ1

�
� Dvmi

�T
Dvmiþ1

�
� Dvmi

�
< e0 then Dvm ¼ Dvmiþ1; ð37bÞ

vm ¼ vm�1 þ Dvm; m ¼ 1; 2; . . . ;M : ð38Þ
The increment of the control voltages obtained from Eqs. (36) to (38) is expected to be more accurate than
that obtained from Eqs. (33) to (35) due to the application of the iteration procedure in each incremental

step.
3.3. Calibrated incremental method (CIM)

In the SIM given in the previous section, since the desired shape is achieved by implementing many sub-

desired-shapes, the error in each incremental step will be passed to the next step due to the fact that the

voltages obtained in one step will be used as the base voltage in the next step. The error in every step will be
accumulated gradually. Although the iterative procedure employed in each incremental step in the IIM can

reduce the error, the accumulated error will not be completely removed. This is because the increment of the

control voltages is obtained based on a local desired shape only without any information of the whole

shape.

In this section, we presented an improved incremental procedure with overall calibration to find the optima

voltages for static shape control of plate with nonlinear piezoelectric actuators. In the method, for the given

incremental desired shape Dym0 , the new obtained control voltage ~vm ¼ vm�1 þ Dvm is treated as an estimation

of vm (denoted by ~vm). ~vm is the approximate control voltage to actuate the desired shape ym0 . With the esti-
mated value ~vm, the nonlinear control forces gð~vmÞ as well as the Jacobian matrix Jð~vmÞ can be evaluated. Like

a linear system with known piezoelectric stress constant, the optimal control voltages for achieving the given

desired shape ym0 can be obtained from Eq. (31), that is, vm ¼ � JTAJð~vmÞ
� 
�1

JT ð~vmÞðAgð~vmÞ þ bmÞ. This
control voltage serves as the base voltage to calculate the new voltages in the next incremental step. The CIM

is described as follows:
Dbm ¼ K�TRTDym0 ; ð39Þ

Dvm ¼ � JTAJðvm�1Þ
� 
�1

JT ðvm�1ÞðAgðvm�1Þ þ DbmÞ; ð40Þ

~vm ¼ vm�1 þ Dvm; ð41Þ

bm ¼ Db1 þ Db2 þ � � � þ Dbm; ð42Þ
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vm ¼ � JTAJð~vmÞ
h i�1

JT ð~vmÞðAgð~vmÞ þ bmÞ; ð43Þ

m ¼ 1; 2; . . . ;M :
The main difference between the incremental method given in Eqs. (33)–(35) and the CIM in Eqs. (39)–(43)

lies in Eqs. (42) and (43), in which a new control voltages vm are obtained for the intermediate desired shape

ym0 ¼
Pm

k¼1 Dy
k
0 based on its estimation ~vm. Since the control voltages vm is obtained from the desired shape

ym0 rather than the incremental desired shape Dym0 only, it calibrates the incremental procedure in each step
and hence, can improve the precision of the calculation.

3.4. Iteratively-calibrated incremental method (ICIM)

To further improve the accuracy of the calculation, the calibration procedure can be done iteratively by

the following iteration process:
Dbm ¼ K�TRTDym0 ; ð44Þ

Dvm ¼ � JTAJðvm�1Þ
� 
�1

JT ðvm�1ÞðAgðvm�1Þ þ DbmÞ; ð45Þ

~vm ¼ vm�1 þ Dvm; ð46Þ

bm ¼ Db1 þ Db2 þ � � � þ Dbm; ð47Þ

~vm0 ¼ ~vm;

~vmiþ1 ¼ � JTAJð~vmi Þ
h i�1

JT ð~vmi Þ Agð~vmi Þ
�

þ bm

�
; i ¼ 1; 2; . . . ; ð48Þ

If ~vmiþ1

��� � ~vmi

��� < e0 then vm ¼ ~vmiþ1:
The main difference between the CIM and the ICIM is that the one-step calibration process in Eq. (43) is

replaced by an iterative calibration process in Eq. (48). In this case, the obtained control voltages are also

taken as the estimated values, and then use them to find new voltages repeatedly until the control voltages

converge.
This incremental procedure not only gives the final control voltages for the desired shape, but also gives

the history of the control voltages varying with different desired shapes. Therefore, the advantage of the

incremental methods is that it can be applied to the cases where the piezoelectric material has a very

complicated behavior such as hysteresis.
4. Illustrative examples

As an example, consider a cantilever rectangular thin plate bonded with 20 nonlinear piezoelectric

actuator patches in its upper surface, as shown in Fig. 3. The geometrical dimensions of the structure as well

as the mesh are also given in Fig. 3. The host structure is meshed into 99 elements including 79 ordinary

plate elements and 20 adhesive elements, and the total node number is 200. Assume that the control voltage

is uniformly distributed in each piezoelectric actuator element and no voltage is applied to the host plate.
The 20 piezoelectric actuators are numbered as A1–A20 aligned in column order. The total number of

electric DOF is nV ¼ 20 and that of the mechanical DOF is n ¼ 1000.



Fig. 3. A cantilevered plate with 20 nonlinear piezoelectric actuators.
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The purpose in this example is to find the optimal control voltages to achieve the desired shape of the

host plate described by its transverse displacement as follow:
wðx; yÞ ¼ ðcosh x� 1Þ sin y=10; 0:06 x6 0:15; �0:066 y6 0:06
which represents a twisted shape. In this example, the weighting matrix R is a 120� 1000 matrix and its

entries corresponding to the transverse displacements of the host plate are set to 1.0 and other entries zero

so that the generalized shape y is composed of only the transverse displacements at all nodes of the host

plate only.

In the following calculation, the host plate is made of isotropic aluminum and the piezoelectric actuators

are made of piezoelectric ceramic PZT. The Young�s moduli of the host plate, the piezoelectric material and

the adhesive layer are 68.9, 81.3 and 2.4 GPa, respectively. The Poisson�s ratios of these materials are 0.25,
0.43 and 0.34, respectively. The piezoelectric stress modulus of the piezoelectric material is a function of the

applied control voltage (field). In practice, the nonlinear function of a given piezoelectric material can be

obtained from its tested strain–field curve. In this example, to demonstrate the proposed incremental

algorithms for finding the control voltage of nonlinearly actuated structure, we simply choose the piezo-

electric stress modulus as
e31 ðVÞ ¼ e32 ðVÞ ¼ e0½1þ a sgn ðVÞV � ð49Þ
and the other entries in the piezoelectric stress matrices eb1 and es1 are zero. The parameter a in Eq. (49) is a

nonlinear factor which determines the shape of the nonlinear stress–voltage curve. A negative nonlinear

factor a represents a softening nonlinear stress–voltage relationship. Fig. 4 gives the nonlinear relationship

between the induced stress and the applied control voltage for different a with e0 ¼ 9:53 N/Vm.

First, the incremental method with and without iteration are examined by comparing with the feedback
algorithm (FA) given by Ajit et al. (2001). When e0 ¼ �9:53 N/Vm, a ¼ �1� 10�4 in Eq. (44) and
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eV ¼ 10�5, the optimal control voltage distribution to achieve the desired shape is obtained by FA and listed

in Table 1, which is used as the baseline of the comparison.

To use the incremental method, the desired shape is divided into 20 equal incremental shapes, and the

optimal control voltages are calculated using the algorithm given in Eqs. (33)–(35) after 20 steps and
Table 1

Optimal control voltages (V) obtained by different algorithms

Actuators FA (Ajit

et al., 2001)

Method

SIM IIM CIM ICIM

Voltage

(V)

Error

(%)

Voltage

(V)

Error

(%)

Voltage

(V)

Error

(%)

Voltage

(V)

Error

(%)

A1 )1000.9 )942.95 )5.79 )947.89 )5.30 )1000.14 )0.08 )1000.9 0

A2 )1337.52 )1230.54 )8.00 )1239.26 )7.35 )1335.39 )0.16 )1337.52 0

A3 1337.52 1230.54 )8.00 1239.26 )7.35 1335.39 )0.16 1337.52 0

A4 1000.9 942.95 )5.79 947.89 )5.30 1000.14 )0.08 1000.9 0

A5 )2357.54 )1989.76 )15.60 )2014.93 )14.53 )2337.52 )0.85 )2357.54 0

A6 1299.8 1199.15 )7.74 1207.39 )7.11 1297.89 )0.15 1299.8 0

A7 )1299.8 )1199.15 )7.74 )1207.39 )7.11 )1297.89 )0.15 )1299.8 0

A8 2357.54 1989.76 )15.60 2014.93 )14.53 2337.52 )0.85 2357.54 0

A9 )1540.14 )1395.42 )9.40 )1406.85 )8.65 )1536.55 )0.23 )1540.14 0

A10 889.09 843.87 )5.09 847.78 )4.65 888.58 )0.06 889.09 0

A11 )889.09 )843.87 )5.09 )847.78 )4.65 )888.58 )0.06 )889.09 0

A12 1540.14 1395.42 )9.40 1406.85 )8.65 1536.55 )0.23 1540.14 0

A13 )1367.69 )1255.5 )8.20 )1264.6 )7.54 )1365.39 )0.17 )1367.69 0

A14 569.56 551.57 )3.16 553.19 )2.87 569.45 )0.02 569.56 0

A15 )569.56 )551.57 )3.16 )553.19 )2.87 )569.45 )0.02 )569.56 0

A16 1367.69 1255.5 )8.20 1264.6 )7.54 1365.39 )0.17 1367.69 0

A17 197.88 195.78 )1.06 195.98 )0.96 197.87 )0.01 197.88 0

A18 187.77 185.88 )1.01 186.06 )0.91 187.76 )0.01 187.77 0

A19 )187.77 )185.88 )1.01 )186.06 )0.91 )187.76 )0.01 )187.77 0

A20 )197.88 )195.78 )1.06 )195.98 )0.96 )197.87 )0.01 )197.88 0

Square error

(m2)

1.2647· 10�9 1.5878· 10�9 1.5478· 10�9 1.2652· 10�9 1.2647· 10�9
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presented in Table 1. To improve the accuracy of the increment of the control voltages in each incremental

step, the method in Eqs. (36)–(38) is used and the obtained control voltage is also listed in Table 1. It is

found that the control voltages of the actuators are anti-symmetrical about the x-axis, and actuator A5 and

A8 have the highest voltage.
Table 1 shows that the SIM in Eqs. (33)–(35) can only give a rough estimation of the optimal control

voltage distribution for the static shape control with nonlinear piezoelectric actuators. Compared to the

results obtained from FA, the maximum error of the control voltages in Table 1 is 15.6%. When the IIM in

Eqs. (36)–(38) is used to determine the incremental voltages for each given increment of the desired shape,

the obtained final control voltages can be improved, the relative maximum error is reduced to 14.5%. It is

found that the error of the obtained control voltage distribution using the incremental method cannot be

remarkably decreased by increasing the number of incremental steps. Therefore, both SIM and IIM are not

competent methods to find the control voltages in nonlinear shape control of structures.
Next, the effectiveness of the CIM is evaluated. When the desired shape is still divided into 20 equal

incremental shapes, the control voltages can be calculated using CIM method given in Eqs. (39)–(43) and

listed in Table 1. The results have been significantly improved compared to the simple incremental algo-

rithm. For example, the maximum error in the voltages obtained by the CIM is less than 0.85%. If the

number of the incremental steps is increased, more accurate control voltages can be obtained using this

method. In addition, when the ICIM is used, the deviation of the control voltage can be completely re-

moved, as shown in Table 1.

Fig. 5 gives the history of the control voltages of the actuator patch A5, which has the highest control
voltage, with the different intermediate desired shapes. In Fig. 5, the km represents the intermediate desired

shapes such that Ym
0 ¼ kmY0. As shown in Fig. 5, the error of the control voltage obtained by the SIM and

IIM become increasingly larger as the desired displacements increase. However, the CIM can give a sat-

isfactory estimation of the control voltage as long as the number of the total incremental steps is adequate.

The ICIM method can give the same results as the FA. Therefore, in the following calculations, only the

ICIM method in Eqs. (44)–(48) is employed.

Applying the obtained the optimal control voltages to the nonlinear piezoelectric actuators, we can

obtain the actually achieved shape. Fig. 6 presents the transverse displacements at all nodes and Fig. 7 gives
the overall view of the actuated shape and the desired shape. It is can be seen from Figs. 6 and 7 that the

achieved shape is very closed to the desired one and the square error between the actuated shape and the

desired one is 1.26 · 10�9 m2.
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Fig. 6. The actuated and desired transverse displacements at all nodes of the host plate.
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The main advantage of the incremental method is that it can give a history of the control voltages as the
desires shape approaches to the final one although more CPU time is needed than FA in the calculation.

Fig. 8 presents the history of the control voltages on the actuators with positive voltages when

a ¼ �1� 10�4. It shows that the optimal control voltage on each actuator increases nonlinearly as the

shape approaches to the desired one, particularly for those with higher control voltages such as actuator A8

and A12. In this case, the final control voltage on actuator A8 is 31% higher than that for the linear case

(a ¼ 0).

Next, the effect of the nonlinear piezoelectricity on the optimal voltage distribution is examined. The

history of the control voltage on actuator A8 is calculated and shown in Fig. 9 using the ICIM method for
different nonlinear factor a from 0 to )0.00012, which represents a weakening nonlinearity. As indicated in

this figure, the control voltage in the actuator requested to achieve a given transverse displacement dis-

tribution varies nonlinearly as the desired displacement gets larger. The stronger the nonlinearity of the

piezoelectricity of the piezoelectric material is, the more significant the rate of change of the control voltage

with respect to desired shape. Fig. 10 depicts the relationship between the control voltage distribution on all

actuators and the nonlinearity of the piezoelectricity. Since the obtained optimal voltages are anti-sym-

metrical about the axis x, only the positive ones are presented in Fig. 10 for different nonlinear factors.
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Fig. 10 shows that the optimal control voltage for each piezoelectric actuator become higher as the non-
linear factor a decreases. The increases of the control voltages due to the weakening nonlinearity of the

piezoelectricity are more remarkable for the actuators with higher control voltages than those with lower
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voltages. For instance, the nonlinearity with a ¼ �0:00012 makes the control voltage on actuator A8 in-

crease 46.2% than that in the linear case. However, the same nonlinearity causes an increase of 2.4% in the
voltage on actuator A17. In the calculation, it is observed that the optimal control voltages cannot be

obtained using any methods when a < �0:00015. The reason is that increasing the voltage on some

actuator which needs high voltage will no longer provide any more actuating forces due to the softening

nonlinear stress–voltage relationship.

Finally, it should be mentioned that the square error between the achieved shape and the desired one

does not depend on the nonlinear factor a, as shown in Fig. 11. The shape achieved by the nonlinear

piezoelectric actuators with the optimal control voltages is the same as that by the nonlinear ones with their

corresponding control voltages.
5. Conclusions

Based on an eight-node adhesive element including a pair of collocated four-node quadrilateral elements

for the upper and lower adherents and a pseudo-adhesive layer element, static shape control of structures

with nonlinear piezoelectric actuators is investigated. An iteratively calibrated incremental algorithm is

presented to find the optimal control voltages. In this method, the desired shape is expressed by the sum of

a number of small incremental desired shapes, and the control voltages to achieve each incremental desired

shape are calculated step by step. The control voltages in each step then are calibrated by using the

accumulated intermediate desired shape. Finally, a simulation example is given to illustrate the effectiveness

of the present algorithm in finding the optimal control voltage distribution for shape control of nonlinearly
actuated structures. Comparison with the feedback algorithm shows that this method can give accurate

control voltages.
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